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Abstract

We study the decay D+ → K−π+π+ using data from Fermilab experiment E791. Fitting the

Dalitz Plot (15090 events) with an amplitude that is the coherent sum of known Kπ resonances

and a uniform non-resonant term, we obtain a relatively large χ2 per degree of freedom (ν). If we

do not fix the mass and width of the K∗0(1430) and use Gaussian form factors for this amplitude,

the χ2/ν is improved and the mass and the width obtained for the K∗0(1430) are consistent with

PDG values. However, the fit is still unsatisfactory. A more substantial improvement and a good

fit result when we also allow for the presence of an additional scalar resonance. The fit mass and

width of this resonance are 797± 19± 43 MeV/c2 and 410± 43± 87 MeV/c2, respectively, and the

fit mass and width of the K∗0(1430) are 1459±7±5 MeV/c2 and 175±12±12 MeV/c2, respectively.

PACS numbers: 13.25.Ft 14.40.Ev
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In this paper we present a Dalitz plot analysis of the Cabibbo-favored decay D+ →
K−π+π+ using data from Fermilab experiment E791. Previous analyses of this decay [1, 2]

modeled the amplitude as the coherent sum of known Kπ resonances and a uniform non-

resonant (NR) term. They observed that the NR term is strongly dominant, unlike other D

decays, and that the sum of the decay fractions substantially exceeds unity, indicating large

destructive interference. Moreover, the fits did not describe the Dalitz plot distributions

well. In our analysis presented here, we obtain similar results but with higher statistics.

Our large sample size allows us to investigate variations in the underlying model, including

changes in form factors, tuning of resonance parameters, and the addition of known and

new resonance structures.

This study is based on the Fermilab E791 sample of 2 × 1010 events produced from

interactions of a 500 GeV/c π− beam with five thin target foils (one platinum, four diamond).

Descriptions of the detector, data set, reconstruction, and vertex resolutions can be found in

Ref. [3]. A clean sample of K−π+π+ decays (charge-conjugate modes are implicit throughout

this paper) was selected by requiring that the 3-prong decay (secondary) vertex be well-

separated from the production (primary) vertex and located outside any solid material. The

sum of the momentum vectors of the three tracks from the secondary vertex was required

to point to the primary vertex, and each of the three tracks was required to pass closer

to the secondary vertex than to the primary. We restricted the p2
T and xF ranges of the

D+ candidates to ensure an accurate model of our experiment in the Monte Carlo (MC)

simulation. Finally, we required that the odd-charge track (track with charge opposite that

of the D± candidate) from the secondary vertex be consistent with kaon identification in

the Čerenkov counters [4].

We fit the K−π+π+ invariant mass distribution shown in Fig. 1(a) by the sum of D+

signal and background terms. The signal was represented by the sum of two Gaussians,

with parameters determined by the fit. We used MC simulations and data to determine

both the shape and the size of charm backgrounds. The significant sources are reflections

from D+
s → K−K+π+ (via K̄∗K+ and φπ+ intermediate states), in which one kaon is

misidentified as a pion. Other sources of charm background are either negligible or broadly

distributed and thus safely included when we estimate combinatorial background. The

combinatorial background was represented by an exponential function. The number of D+

candidates obtained by the fit is 16190 ± 139.
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FIG. 1: (a) The K−π+π+ invariant mass spectrum. The shaded area corresponds to the back-

ground level. The crosshatched region is the sample used for the Dalitz plot analysis. (b) The

D+ → K−π+π+ Dalitz plot, symmetrized for the indistinguishable pions.

For the Dalitz plot analysis, we selected candidates in the Kππ mass range 1.85–1.89

GeV/c2 (crosshatched region in Fig. 1(a)). This results in 15090 events, with about 6% due

to background. Fig. 1(b) shows the corresponding Dalitz plot, m2
12 vs. m2

13, in which the

kaon candidate is labeled particle 1, and the plot is symmetrized with respect to the two

pions (particles 2, 3).

To study the resonant structure in Fig. 1(b), an unbinned maximum likelihood fit is

used. The likelihood L is computed as L =
∏

events

[∑3
i=1 nBiPBi + nSPS

]
, where PBi and

PS are the normalized probability density functions (PDF’s) for background and signal,

respectively, and nBi and nS are their fractional contributions. Each background PDF is

written as PBi = 1
NBi

bi(M)FBi(m2
12,m

2
13), where NBi is the normalization, bi(M) is the

distribution in the Kππ mass spectrum, and FBi is the shape in the Dalitz plot. The shape

of the combinatorial background is obtained from a fit to events above the signal peak in

the Kππ mass range 1.92–1.96 GeV/c2. The shapes of the D+
s → K̄∗K+ and D+

s → φπ+

backgrounds are from MC simulations.

The signal PDF is PS = 1
NS
g(M)ε(m2

12,m
2
13)|A|2, where NS is the normalization, g(M)

describes the signal shape in the Kππ mass spectrum, and ε(m2
12,m

2
13) is the acceptance
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across the Dalitz plot, including smearing. The signal amplitude A is a coherent sum of a

uniform NR amplitude and resonant Kπ amplitudes,

A = a0e
iδ0A0 +

N∑

n=1

ane
iδnAn(m2

12,m
2
13) , (1)

where each term is Bose symmetrized for the pions: An = An[(12)3] + An[(13)2]. The

coefficients an are magnitudes and the δn are relative phases.

Our first fit, referred to as Model A, includes only well-established resonances and fixes

their masses and widths to PDG [5] values. This approach has been used in previous Dalitz-

plot analyses (e.g., Refs. [2, 6]). The NR amplitude A0 is represented by a constant; i.e., it

has no magnitude or phase variation across the Dalitz plot. Each resonant amplitude An

(n > 0) is written as

An = BWn F
(J)
D F (J)

n M(J)
n . (2)

The BWn factor is the relativistic Breit-Wigner propagator, BWn = {m2
n − m2 −

imnΓn(m)}−1, where m is the invariant mass of the Kπ pair forming a resonance (either m12

or m13), mn is the resonance mass, and Γn(m) is the mass-dependent width. The factors

F
(J)
D and F (J)

n are Blatt-Weisskopf penetration factors [7], which depend on the spin J and

the radii of the relevant mesons. In Model A, the radii are fixed as rD = 5 GeV−1 for the

D meson and rR = 1.5 GeV−1 for all Kπ resonances [6]. No form factors F are used for

scalar resonances. The termM(J)
n accounts for the decay angular distribution. Ref. [8] gives

detailed expressions for all these functions; note that we use the opposite sign for the BWn

term, for easier comparison of our results with those of Ref. [2].

For Model A, we fix the NR parameters to be a0 = 1 and δ0 = 0, and include all

well-established Kπ resonances; the only free parameters of the fit are the magnitudes an

and phases δn of the resonances. The so-called decay fraction for each mode is obtained

by integrating its intensity (squared amplitude) over the Dalitz plot and dividing by the

integrated intensity with all modes present. The fit results are listed in Table I. We observe

contributions from the same channels reported previously [1, 2]; i.e., a high NR decay fraction

(over 90%), followed by K̄∗0 (1430)π+, K̄∗(892)π+, and K̄∗(1680)π+. We also measure a small

but statistically significant contribution from K̄∗2 (1430)π+. No other resonances considered

are found to contribute. The sum of the decay fractions is ∼ 140%, indicating a high level

of interference.
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To assess the quality of the fit, we developed a fast-MC algorithm which produces binned

Dalitz plot densities according to signal and background PDF’s, and including detector

efficiency and resolution. A χ2 is calculated from the difference between the binned Dalitz-

plot-density distribution for data and that for fast-MC events generated using the parameters

obtained from the fit of Model A. The χ2 summed over all bins is 167 for 63 degrees of

freedom (ν). The largest contributions to this χ2 come from bins at low Kπ mass. In

Fig. 2(a) we show the mass-squared projections; the top (bottom) plot shows the lower

(higher) mass combination. The points represent data and the solid line represents fast-

MC simulation of Model A. The main discrepancies occur below 0.6 (GeV/c2)2 and around

2.5 (GeV/c2)2. These discrepancies, and the large value of χ2/ν, motivated us to study

alternative ways to model the decay amplitude.

For our second fit, Model B, we allow the mass and width of the scalar K∗0 (1430) resonance

to float. In addition, we include form factors to account for the finite size of the decaying

mesons in this scalar transition [9, 10]. This phenomenological prescription provides a

better fit to the data at low mass than does a simple Breit-Wigner. The amplitude is

written as F
(0)
D F (0)

n BWn, in which the form factors are Gaussian: F (0) = exp(−p∗2/(2k2
0)).

The factor p∗ is the momentum of the decay products, k0 =
√

6/r, and r is the decaying

meson radius. These radii (rD and rR introduced above) become additional free parameters

in the fit. The results of this fit are listed in the middle column of Table I. The decay

fractions obtained are very similar to those found for Model A, but the χ2/ν is improved,

dropping from 167/63 to 126/63. The mass and width of the K∗0 (1430) obtained by the fit

are 1416±27 MeV/c2 and 250±21 MeV/c2 respectively, which are close to the PDG values of

1412±6 MeV/c2 and 294±23 MeV/c2 [5]. The meson radii obtained are rD = 0.8±1.0 GeV−1

and rR = 1.8 ± 3.4 GeV−1.

Since Model B still does not give a satisfactory fit, we attempt to improve the decay model

further by allowing for an additional scalar amplitude. We call this Model C. For this extra

amplitude, we use Gaussian form factors similar to those used for the K∗0(1430) [11]. The

decay fractions and relative phases obtained by the fit are listed in the right-most column of

Table I. In the table we denote the additional scalar resonance as “κ”. In fact, discussions

of the existence of such a resonance are found in the literature [12, 13]. The fit results are

very different from those obtained for Models A and B; in particular, the NR decay fraction

drops from 90% to (13± 6)%, and the κπ+ channel is now the dominant decay mode with a
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decay fraction of (48±12)%. The χ2/ν decreases to 46/63, substantially lower than those for

Models A and B. The mass and width of the K∗0 (1430) resonance are significantly higher and

narrower, respectively, than those obtained before. Here, mK∗(1430) = 1459 ± 7 ± 5 MeV/c2

and ΓK∗(1430) = 175± 12± 12 MeV/c2. The mass and width of the additional resonance (κ)

are 797±19±43 MeV/c2 and 410±43±87 MeV/c2, respectively. The meson radii obtained

in Model C are rD = 5.0 ± 0.5 GeV−1 and rR = 1.6 ± 1.3 GeV−1. The Kπ mass-squared

projections are shown in Fig. 2(b).

To better understand our results for Model C, we perform the following test. For Mod-

els B and C we use the fast-MC to generate an ensemble of 1000 “experiments”, with each

experiment having a sample size Poisson-distributed around our observed sample size. For

each experiment we calculate ∆wB,C ≡ −2(lnLB − lnLC), where LB and LC are the like-

lihood functions evaluated with parameters from Models B and C, respectively. For the

ensemble generated without κπ+, 〈∆wB,C〉 = −123; i.e., Model B has greater likelihood.

For the ensemble generated with κπ+, 〈∆wB,C〉 = 143; i.e., Model C has greater likelihood.

In both cases the rms of the distributions is about 23. For the data, ∆wB,C = 123. This

value is similar to that obtained for fast-MC events generated according to Model C, and it

is very different from that of events generated according to Model B.

We investigate the stability of our results and estimate systematic errors by dividing the

total sample into various subsamples: separate D+ and D− decays, and disjoint samples

in bins of p2
T , xF , and Kππ invariant mass. The mass obtained for the κ, and the mass

and width obtained for the K∗0(1430), are found to vary relatively little; e.g., the lowest mκ

obtained is 770 MeV/c2 and the highest is 861 MeV/c2. The width of the κ, and the κπ+

and NR branching fractions, are found to vary much more: Γκ ranges from 298–543 MeV/c2

and the branching fractions range from 28–63% and 31–5%, respectively. It is worth noting

that the largest NR branching fraction obtained (31%) is nonetheless substantially lower

than that obtained without a κ resonance.

We investigate the stability of our results with respect to the fitting procedure by changing

the fixed parameters of the fit: i.e., background parameterizations, and the mass and width

of the K∗(1680). We also investigate the sensitivity of the κ signal to the background by

repeating the analysis for samples selected with tighter and looser event selection criteria.

In all cases we observe no statistically significant changes in our results.
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TABLE I: Results of the Dalitz plot fits. Models A and B are without κ; Model C is with κ. For

each mode the first row lists the decay fraction in percent, the second row lists the magnitude of the

amplitude (an), and the third row lists the relative phase (δn). The first error listed is statistical,

and the second error (when listed) is systematic.

Mode Model A Model B Model C

NR 90.9± 2.6 89.5± 16.1 13.0± 5.8± 4.4

1.0 (fixed) 2.72± 0.55 1.03± 0.30± 0.16

0◦(fixed) (−49± 3)◦ (−11± 14± 8)◦

– – 47.8± 12.1± 5.3

κπ+ – – 1.97± 0.35± 0.11

– – (187± 8± 18)◦

13.8± 0.5 12.1± 3.3 12.3± 1.0± 0.9

K̄∗(892)π+ 0.39± 0.01 1.0 (fixed) 1.0 (fixed)

(54± 2)◦ 0◦ (fixed) 0◦ (fixed)

30.6± 1.6 28.7± 10.2 12.5± 1.4± 0.5

K̄∗0(1430)π+ 0.58± 0.01 1.54± 0.75 1.01± 0.10± 0.08

(54± 2)◦ (6± 12)◦ (48± 7± 10)◦

0.4± 0.1 0.5± 0.3 0.5± 0.1± 0.2

K̄∗2(1430)π+ 0.07± 0.01 0.21± 0.18 0.20± 0.05± 0.04

(33± 8)◦ (−3± 26)◦ (−54± 8± 7)◦

3.2± 0.3 3.7± 1.9 2.5± 0.7± 0.3

K̄∗(1680)π+ 0.19± 0.01 0.56± 0.48 0.45± 0.16± 0.02

(66± 3)◦ (36± 25)◦ (28± 13± 15)◦

χ2/ν 167/63 126/63 46/63

The results of all these investigations lead to the systematic errors quoted in the text and

Table I.

Finally, we have studied the stability of our results with respect to the theoretical model.

For example, we modified the κ Breit-Wigner to have a “running mass” term as proposed

by Törnqvist [9], but the fit results did not change. We varied the momentum dependence

of the κ form factors. We introduced Gaussian form factors for all other resonant states. We
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FIG. 2: m2(Kπ)low and m2(Kπ)high projections for data (error bars) and fast MC (solid line):

Models A (a) and C (b).

varied the shape of the NR term. In all cases we obtained similar results for the κ mass and

width within errors; however, the details of the parameterizations affect the relative amounts

of κπ+ and NR contributions. For example, when parameterizing the NR amplitude with

an exponential function exp−α(m2
12 +m2

13) (α as a free parameter), we obtained mκ =

771± 27 MeV/c2 and Γκ = 346± 65 MeV/c2 (similar to before), but the κπ+ decay fraction

was (31.4 ± 5.7)% and the NR fraction was (26.9 ± 23.5)%.

We have also checked whether other models without a scalar κ provide acceptable fits. We

tried a toy model (T) by replacing the κ complex Breit-Wigner by a Breit-Wigner amplitude

with no phase variation. This model converged to a similar mass and width (871±10 MeV/c2

and 427 ± 23 MeV/c2, respectively) but with large decay fractions for this extra amplitude

and for the NR amplitude, reflecting strong interference. The fast-MC gave 〈∆wT,C〉 = 60

(rms of 16) for an ensemble generated according to Model C, and 〈∆wT,C〉 = −60 for an

ensemble generated with toy model parameters. For the data, ∆wT,C = 45; i.e., the data

prefers that the additional amplitude have a phase variation and not just a larger amplitude

at low Kπ mass. We also replaced the scalar κ resonance by vector and tensor resonances

to test the angular distribution. The vector resonance model (V) converged to mass and

width values of 1103± 45 MeV/c2 and 350± 93 MeV/c2, respectively, with a decay fraction
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of only 1.8% and a large NR fraction. The fast-MC gave 〈∆wV,C〉 = 140 (rms of 23) for the

ensemble generated according to Model C, and 〈∆wV,C〉 = −140 for the ensemble generated

with vector parameters. For the data, ∆wV,C = 116; i.e., the data prefers that the additional

resonance be scalar rather than vector. We were not able to make the tensor model converge,

the width being driven to large negative values. We also performed a variety of fits [14] to

study the NR shape in variants of Model A, i.e., without an additional scalar amplitude.

We fitted the NR amplitude to polynomials, and we also allowed for different interfering

angular distributions, but none of these fits were as good as that of Model C.

In summary, we have performed a Dalitz plot analysis of the decay D+ → K−π+π+. We

compared models in which the signal amplitude A is the coherent sum of a uniform non-

resonant term and Breit-WignerKπ resonances. The best fit to our data is obtained when we

include an additional scalar resonance with a phase variation corresponding to that of a Breit-

Wigner; this channel subsequently accounts for approximately half of the decay rate. The

mass and width obtained for the resonance are 797±19±43 MeV/c2 and 410±43±87 MeV/c2,

respectively. The fit mass and width of the K∗0 (1430) depend on whether this additional

Breit-Wigner is included or not. When not included, mK∗(1430) = 1416 ± 27 MeV/c2 and

ΓK∗(1430) = 250 ± 21 MeV/c2 (statistical errors only), in good agreement with PDG values

[5]. When included, mK∗(1430) = 1459±7±5 MeV/c2 and ΓK∗(1430) = 175±12±12 MeV/c2.

Overall we conclude that the scalar contribution to A is not adequately described by the

sum of a uniform non-resonant term and a K∗0 (1430) term. Including an additional scalar

resonance inA results in a good fit to the data and shifts the mass and width of theK∗0 (1430)

by +45 MeV/c2 and −75 MeV/c2, respectively.
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