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Abstract

We consider two possible sources of the T -violating muon transverse polarization in the
process K+ → µ+νγ: electromagnetic final state interaction in the SM and contribution
due to charged-Higgs exchange diagrams in the framework of the Weinberg three doublets
model. It is shown that at the one-loop level of the SM the muon transverse polarization,
P SM
T , varies within (0.0÷ 1.1 · 10−3) in the Dalitz plot region. Averaged value of the muon

polarization, 〈P SM
T 〉, in the kinematic region of Eγ ≥ 20 MeV is equal to 4.76 · 10−4. In the

case of the model with three Higgs doublets the muon transverse polarization is calculated
as a function of charged Higgs masses, imaginary part of the Yukawa coupling constants
product and vacuum expectation values of the Higgs doublets. The averaged value of the
transverse polarization in the Weinberg model is 〈PHiggs

T 〉 = −6.62 · 10−5. Perspectives to
probe the effect caused by the charged Higgs exchange diagrams in planned kaon experiments
are discussed.
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1 Introduction

The study of the radiative K-meson decays is extremely interesting from the point of view
of searching for the new physics effects beyond the Standard model (SM). One of the most
appealing possibilities is to search for new interactions, which could lead to CP -violation.
Contrary to SM, where the CP -violation is caused by the presence of the complex phase
in the CKM matrix, the CP -violation in extended models, for instance, in models with
three and more Higgs doublets can naturally arises due to the complex couplings of new
Higgs bosons to fermions [1]. Such effects can be probed in experimental observables, which
are essentially sensitive to T -odd contributions. These observables, for instance, are T -odd
correlation (T = 1

M3
K
~pγ ·[~pπ×~pl]) inK± → π0µ±νγ decay [2] and muon transverse polarization

in K± → µ±νγ one. The search for new physics effects using the T -odd correlation analysis
in the K± → π0µ±νγ decay will be done in the proposed OKA experiment [3], where the
statistics of 7.0 · 105 events for the K+ → π0µ+νγ decay is expected.

At the moment the E246 experiment at KEK [4] performs the K± → µ±νγ data analysis
searching for T -violating muon transverse polarization. It should be noted that expected
value of new physics contribution to the PT can be of the order of ' 7.0 · 10−3 ÷ 6.0 · 10−2

[5,6], depending on the extended model type. Thus, looking for the new physics effects in the
muon transverse polarization it is extremely important to estimate the contribution from so
called “fake” polarization, which is caused by the SM electromagnetic final state interactions
and which is natural background for new interaction contributions.

The Weinberg model with three Higgs doublets [1,6] is especially interesting for the search
of possible T -violation. This model allows one to have complex Yukawa couplings that leads
to extremely interesting phenomenology. It was shown [2] that the study of the T -odd
correlation in the K+ → π0µ+νγ process allows one either to probe the terms, which are
linear in CP -violating couplings, or put the strict bounds on the Weinberg model parameters.
So, it seems important to analyze possible effects, which this model can induce in the muon
transverse polarization in the K± → µ±νγ decay, as well.

In this paper we investigate two possible sources of the muon transverse polarization in
theK± → µ±νγ process: ) the effect, induced by the electromagnetic final state interaction in
the one-loop approximation of the minimal Quantum Electrodynamics, ) the effect, induced
by the charged-Higgs exchange within the three-doublets Weinberg model.

In next Section we present the calculations of the muon transverse polarization with
account for one-loop diagrams with final state interactions within the SM. In Section 3
we calculate the muon transverse polarization caused by the diagrams with charged-Higgs
exchange, where new charged Higgs bosons have complex couplings to fermions. Last Section
summarized the results and conclusions.

2 Muon transverse polarization in the K+ → µ+νγ pro-

cess within SM

The K+ → µ+νγ decay in the tree level of SM is described by the diagrams shown in Fig. 1.
The diagrams in Fig. 1b and 1c correspond to the muon and kaon bremsstrahlung, while
the diagram in Fig. 1a corresponds to the structure radiation. This decay amplitude can be
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written as follows

M = ie
GF√

2
V ∗usε

∗
µ

(
fKmµu(pν)(1 + γ5)

(
pµK

(pKq)
− (pµ)µ

(pµq)
− q̂γµ

2(pµq)

)
v(pµ)−Gµν lν

)
(1)

where

lµ = u(pν)(1 + γ5)γµv(pµ)

Gµν = iFv ε
µναβqα(pK)β − Fa (gµν(pKq)− pµKqν) (2)

GF is the Fermi constant, Vus is the corresponding element of the CKM matrix; fK is the
K-meson leptonic constant; pK , pµ, pν , q are the kaon, muon, neutrino, and photon four-
momenta, correspondingly; εµ is the photon polarization vector; Fv and Fa are the kaon
vector and axial formfactors. In formula (2), we use the following definition of Levi-Civita
tensor: ε0123 = +1.

The part of the amplitude, which corresponds to the structure radiation and kaon
bremsstrahlung and which will be used further in one-loop calculations, has the form:

MK = ie
GF√

2
V ∗usε

∗
µ

(
fKmµu(pν)(1 + γ5)

(
pµK

(pKq)
− γµ

m µ

)
v(pµ)−Gµν lν

)
(3)

The partial width of the K+ → µ+νγ decay in the K-meson rest frame can be expressed
as

dΓ =

∑ |M |2
2mK

(2π)4δ(pK − pµ − q − pν)
d3q

(2π)32Eq

d3pµ
(2π)32Eµ

d3pν
(2π)32Eν

, (4)

where summation over muon and photon spin states is performed.
Introducing the unit vector along the muon spin direction in muon rest frame, ~s, where

~ei (i = L, N, T ) are unit vectors along longitudinal, normal and transverse components of
muon polarization, one can write down the squared matrix element of the transition into the
particular muon polarization state in the following form:

|M |2 = ρ0[1 + (PL~eL + PN~eN + PT~eT ) ·~s] , (5)

where ρ0 is the Dalitz plot probability density averaged over polarization states. The ~ei unit
vectors can be expressed in term of three-momenta of final particles:

~eL =
~pµ
|~pµ|

~eN =
~pµ × (~q × ~pµ)

|~pµ × (~q × ~pµ)| ~eT =
~q × ~pµ
|~q × ~pµ|

. (6)

With such definition of ~ei vectors, PT , PL, and PN denote transverse, longitudinal, and
normal components of the muon polarization correspondingly. It is convenient to use the
following variables

x =
2Eγ
mK

y =
2Eµ
mK

λ =
x+ y − 1− rµ

x
rµ =

m2
µ

m2
K

, (7)
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where Eγ and Eµ are the photon and muon energies in the kaon rest frame. Then, the Dalitz
plot probability density, as a function of the x and y variables, has the form:

ρ0 =
1

2
e2G2

F |Vus|2 ·
(4m2

µ|fK|2
λx2

(1− λ)
(
x2 + 2(1− rµ)(1 − x− rµ

λ
)
)

+ m6
Kx

2(|Fa|2 + |Fv|2)(y − 2λy − λx+ 2λ2)

+ 4 Re(fKF
∗
v ) m4

Krµ
x

λ
(λ − 1)

+ 4 Re(fKF
∗
a ) m4

Krµ(−2y + x+ 2
rµ
λ
− x

λ
+ 2λ)

+ 2 Re(FaF
∗
v ) m6

Kx
2(y − 2λ + xλ)

)
(8)

Calculating the muon transverse polarization PT we follow the original work [7] and assume
that the amplitude of the decay is CP -invariant, and the fK, Fv, and Fa formfactors are
real. In this case the tree level muon polarization PT = 0. When one-loop contributions
are incorporated, the nonvanishing muon transverse polarization can arise due to the in-
terference of tree-level diagrams and imaginary parts of one-loop diagrams, induced by the
electromagnetic final state interaction.

To calculate formfactor imaginary parts one can use the S-matrix unitarity:

S+S = 1 (9)

and, using S = 1 + iT , one gets:

Tfi − T ∗if = i
∑

n

T ∗nfTni, (10)

where i, f, n indices correspond to the initial, final, and intermediate states of the particle
system. Further, using the T -invariance of the matrix element one gets:

ImTfi =
1

2

∑

n

T ∗nfTni (11)

Tfi = (2π)4δ(Pf − Pi)Mfi (12)

SM one-loop diagrams, which contribute to the muon transverse polarization in the K+ →
µ+νγ decay, are shown in Fig. 2. Using Eq. (3) one can write down imaginary parts of these
diagrams. For diagrams in Figs. 2a, 2c one has

ImM1 =
ieα

2π

GF√
2
V ∗usu(pν)(1 + γ5)

∫
d3kγ
2ωγ

d3kµ
2ωµ

δ(kγ + kµ − P )Rµ ×

(k̂µ −mµ)γµ
q̂ + p̂µ −mµ

(q + pµ)2 −m2
µ

γδε∗δv(pµ) (13)

For diagrams in Figs. 2b, 2d one has

ImM2 =
ieα

2π

GF√
2
V ∗usu(pν)(1 + γ5)

∫
d3kγ
2ωγ

d3kµ
2ωµ

δ(kγ + kµ − P )Rµ ×

(k̂µ −mµ)γδε∗δ
k̂µ − q̂ −mµ

(kµ − q)2 −m2
µ

γµv(pµ), (14)
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where

Rµ = fKmµ

(
(pK)µ
(pKkγ)

− γµ
mµ

)
− iFvεµναβ(kγ)

α(pK)βγν

+ Fa(γµ(pKkγ)− (pK)µk̂γ) . (15)

To write down the contributions from diagrams in Figs. 2e, 2f, Rµ should be substituted
by

Rµ = fKmµ

(
γµ
mµ

− (kµ)µ
(kµkγ)

− k̂γγµ
2(kµkγ)

)
(16)

in expressions (13), (14).
We do not present the expression for the imaginary part of the diagram in Fig. 2g and

further, in calculations, we neglect this diagram contribution to muon transverse polarization,
because, as it will be shown later, its contribution is negligibly small in comparison with the
contribution from other diagrams. The contribution from this SM diagram was calculated
for the first time in [18], where the authors clarified as well the maximal value of PT in
generic SUSY models with R-parity conservation.

The details of the integrals calculation entering Eqs. (13), (14), and their dependence on
kinematical parameters are given in Appendix 1.

The expression for the amplitude with account for imaginary one-loop contributions can
be written as:

M = ie
GF√

2
V ∗usε

∗
µ

(
f̃Kmµu(pν)(1 + γ5)

(
pµK

(pKq)
− (pµ)µ

(pµq)

)
v(pµ) +

F̃nu(pν)(1 + γ5)q̂γµv(pµ)− G̃µν lν

)
, (17)

where
G̃µν = iF̃v ε

µναβqα(pK)β − F̃a (gµν(pKq)− pµKqν) . (18)

The f̃K, F̃v, F̃a, and F̃n formfactors include one-loop contributions from diagrams shown in
Figs. 2a-2f. The choice of the formfactors is determined by the matrix element expansion
into set of gauge-invariant structures.

As far as we are interested in the contributions of imaginary parts of one-loop diagrams
only, since namely they lead to nonvanishing transverse polarization, we neglect the real
parts of these diagrams and assume that Ref̃K, ReF̃v, ReF̃a coincide with their tree-level
values, fK, Fv, Fa, correspondingly, and ReF̃n = −fKmµ/2(pµq). Explicit expressions for
imaginary parts of the formfactors are given in Appendix 2.

The muon transverse polarization can be written as

PT =
ρT
ρ0
, (19)

where

ρT = 2m3
Ke

2G2
F |Vus|2x

√
λy − λ2 − rµ

(
mµ Im(f̃KF̃

∗
a )(1 − 2

x
+

y

λx
)
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+mµ Im(f̃K F̃
∗
v )(

y

λx
− 1− 2

rµ
λx

) + 2
rµ
λx

Im(f̃KF̃
∗
n)(1− λ)

+m2
Kx Im(F̃nF̃

∗
a )(λ − 1) +m2

Kx Im(F̃nF̃
∗
v )(λ − 1)

)
(20)

It should be noted that expression (20) disagrees with ρT in [15]. In particular, the terms
containing ImFn are missed in the ρT expression given in [15]. Moreover, calculating the
muon transverse polarization we took into account the diagrams shown in Fig. 2e and 2f,
which have been neglected in [15], and which give the contribution comparable with the
contribution from other diagrams in Fig. 2.

3 Three Higgs doublets Weinberg model

As it was shown in original paper by Weinberg [1], one of possible sources of spontaneous CP -
violation due to the charged-Higgs bosons exchange is the presence of different relative phases
of vacuum expectation values of Higgs doublets. However, the Natural Flavor Conservation
requires at least three Higgs doublets. In the framework of this model there are three sources
of CP -violation:

(I) the complex CKM-matrix;

(II) a phase in the charged-Higgs boson mixing;

(III) neutral scalar-pseudoscalar mixing.

In the original Weinberg three-Higgs-doublet model, CP is broken spontaneously, CKM-
matrix is real, and observed CP -violation in the neutral kaon sector comes solely from
charged-Higgs boson exchange. However, as it was shown in [9], in the framework of this
model the charged and neutral Higgs boson exchange can lead to the noticeable effect in
the NEDM value, while the transverse muon polarization in the K+ → µ+νγ decay is
affected by the charged-Higgs boson exchange only. So, to single out the effect (II), we
will suppose, following the ideology of [6], that CP -violation effect due to the neutral-Higgs
boson exchange is smaller than that one caused by the charged-Higgs boson exchange.

In the framework of the Weinberg model the charged Higgs boson interaction with quarks
and leptons and be represented as:

LY = (2
√

2GF )1/2
2∑

i=1

(αiŪLKMDDR + βiŪRMUKDL + γiN̄LMEER)H+
i +H.C. ,

where K is the CKM matrix, MU , MD ME are the mass matrices for quarks of d- and
u-type and charged leptons, correspondingly; αi, βi, γi are the complex couplings, with are
interrelated as follows [10]

Im(α2β
∗
2)

Im(α1β∗1)
=

Im(β2γ
∗
2)

Im(β1γ∗1)
=

Im(α2γ
∗
2)

Im(α1γ∗1)
= −1

and
1

v2
2

Im(α1γ
∗
1) = − 1

v2
1

Im(β1γ
∗
1) = − 1

v2
3

Im(α1β
∗
1)
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where vi (i = 1, 2, 3) are the vacuum expectation values of Higgs doublets, φi, and

v = (v2
1 + v2

2 + v2
3)1/2 = (2

√
2GF )−1/2

In the model with three Higgs doublets the K+ → µ+νγ decay amplitude can be written as:

M = MSM +MHiggs ,

where MSM is the SM part of the amplitude with W -boson exchange, and MHiggs is the part
amplitude due to the charged-Higgs boson exchange. The amplitude due to charged-Higgs
boson exchange is

MHiggs = −eGF√
2
V ∗us[ 〈γ|sγ5u|K+〉 ν(1 + γ5)µ+

+ 〈0|sγ5u|K+〉 ν(1 + γ5)
−p̂µ − q̂ +mµ

2(pµq)
ε̂∗µ]J,

where

J = mµ

2∑

i=1

muβ
∗
i γi −msα

∗
i γi

M2
Hi

.

The amplitude gets the contributions from the 〈0|sγ5u|K+〉 and 〈γ|sγ5u|K+〉 matrix el-
ements, which can be expressed in terms of the fK formfactor, using its definition and
requiring the gauge invariance of the matrix element:

〈0|sγ5u|K+〉 = −i m
2
KfK

ms +mu

〈γ|sγ5u|K+〉 = −i m2
KfK

(ms +mu)(pKq)
(pKε

∗)

From now on, to simplify the expressions, we introduce the following constant:

η =
m2
KfK

ms +mu

Using this notation one can rewrite the total amplitude as follows

M = ie
GF√

2
V ∗usε

∗
µ

(
(fKmµ − ηJ)u(pν)(1 + γ5) ·

(
pµK

(pKq)
− (pµ)µ

(pµq)
− q̂γµ

2(pµq)

)
v(pµ)−Gµν lν

)

Then ρ0 takes the form:

ρ0 =
1

2
e2G2

F |Vus|2 ·
(

4(mµfK − ηJ)2

λx2
(1− λ)

(
x2 + 2(1 − rµ)(1− x− rµ

λ
)
)

+

+ m6
Kx

2(F 2
a + F 2

v )(y − 2λy − λx+ 2λ2) +

+ 4(fKFv −
ηFvRe(J)

mK
) m4

Krµ
x

λ
(λ− 1) +

+ 4(fKFa −
ηFaRe(J)

mK
) m4

Krµ(−2y + x+ 2
rµ
λ
− x

λ
+ 2λ) +

+ 2(FaFv) m
6
Kx

2(y − 2λ + xλ)
)
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The muon transverse polarization is PT = ρT/ρ0, where

ρT = 2m3
Ke

2ηG2
F |Vus|2Im(J) ·
√
λy − λ2 − rµ

(
2xFv + 2Fa +

1

λ
(2rµFv − (x+ y)(Fa + Fv))

)

and1

Im(J) = mµms
Im(α1β

∗
1)

M2
H

v2
2

v2
3

. (21)

Thus, the value of muon transverse polarization in the framework of this model is the function
of charged-Higgs boson masses, vacuum expectation values and imaginary part of Yukawa
couplings product. PT reaches its maximal value at maximal values of Im(α1β

∗
1) and v2

2/v
2
3

and at minimal mass of charged-Higgs boson. Therefore, to estimate the model effect in the
muon transverse polarization one needs to know bounds on the model parameters, which
follow from experimental data.

As it was pointed out in [6], the bounds on the parameters of Weinberg model can be
determined from:

I. LEP II data on direct search of charged-Higgs boson. The current bound [11] on the
charged-Higgs boson mass is

MH± ≥ 69 GeV . (22)

II. Model bounds for the analog of the CKM-matrix for the charged-Higgs boson mixing,
which relates vacuum expectation values of Higgs doublets [6]:

v3

√
v2

1 + v2
2 + v2

3

2v1v2
≥ 9 . (23)

III. Bounds on the v2/v1 ratio from the D0 − D̄0-mixing data. Dominant contribution
to the D-meson mass difference, δMD, due to the D0 − D̄0-mixing and caused by
box-diagrams with charged-Higgs bosons, can written as

δMD =
G2
F

24π2
sin2 θCmDf

2
DBD

m4
s

M2
H

(
v2

v1
)4 . (24)

IV. Bounds coming from the experimental data on neutron electric dipole moment (NEDM).
At one-loop level, taking into account diagrams with charged-Higgs boson exchange,
one can write down the expression for NEDM as follows [12]:

dn =
4

3
dd = −

√
2GF

9π2
mdIm(α1β

∗
1) ·

·
∑

i=c,t

xi
(1− xi)2

·
(

5

4
xi −

3

4
− 1− 3

2
xi

1 − xi
ln xi

)
K2
id , (25)

xi = m2
i/M

2
H .

In Figs. 3a-3c we present the allowed parameter regions, which follow from (22)-(25). Fur-
ther, calculating the muon transverse polarization in the framework of the Weinberg model
we will adopt the model parameters taking into account the bounds above.

1Here and further we assume that MH2 >> MH1 ∼ MH and neglect the terms multiplied by mu.
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4 Results and discussion

For the numerical calculations we use the following formfactor values

fK = 0.16 GeV, Fv =
0.095

mK
, Fa = −0.043

mK
.

The fK formfactor is determined from experimental data on kaon decays [11], and Fv, Fa
ones are calculated at the one loop-level in the Chiral Perturbation Theory [13]. It should
be noted that our definition for Fv differs by sign from that in [13]. With these choice of
formfactor values the decay branching with the cut on photon energy Eγ ≥ 20 MeV is equal
to Br(K± → µ±νγ) = 3.3 · 10−3, that is in good agreement with PDG data.

The Standard Model case

The three-dimensional distribution of muon transverse polarization, calculated at the SM
one-loop approximation is shown in Fig. 4. It should be noted that PT as the function of the
x and y parameters is characterized by the sum of individual contributions of diagrams in
Figs. 2a-f, while the contributions from diagrams 2a-d [8] and 2e-f are comparable in absolute
value, but opposite in sign, so the total PT (x, y) distribution is the difference of these group
contributions and in absolute value is about one order of magnitude less than each of them.
Our estimates show that in the Dalitz plot region the contribution from diagram 2g is an
order of magnitude less than the total contribution from other diagrams.

As one can see in Fig. 4, the maximal absolute value of the muon transverse polarization
is achieved in two domains of the Dalitz plot region:

a) at 0.3 ≤ x = 2Eγ/mK ≤ 0.6 and y = 2Eµ/mK → 1;
) at 0.5 ≤ x = 2Eγ/mK ≤ 0.7 and 0.5 ≤ y = 2Eµ/mK ≤ 0.7.
Indeed, analysing the level lines for PT , shown in Fig. 5, it is easy to notice that the

maximal values of PT are located near to the x, y values (0.3;1.0) and (0.6;0.6). It should
be noted that the value of muon transverse polarization is positive in the whole Dalitz plot
region and does not take negative values. Averaged value of transverse polarization can be
obtained by integrating the function ρT/Γ(K+ → µ+νγ) over the physical region, and with
the cut on photon energy Eγ > 20 MeV it is equal to

〈P SM
T 〉 = 4.76 · 10−4 . (26)

Let us note that obtained numerical value of the averaged transverse polarization and
PT (x, y) kinematical dependence in Dalitz plot differ from those given in [15-17]. As it was
calculated in [15], the PT value varies in the region of (−0.1 ÷ 4.0) · 10−3 for cuts on the
muon and photon energies, 200 < Eµ < 254.5 MeV, 20 < Eγ < 200 MeV. We have already
mentioned above that

1) The authors of [15] did not take into account terms containing the imaginary part of
the Fn formfactor (contributing to ρT ), which are, in general, not small being compared with
others.

2) The authors of [15] omitted the diagrams, shown in Fig. 2e, 2f, though, as it was
mentioned above, their contribution to PT is comparable with that one of diagrams in Fig.
2a-2d.
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All these points lead to serious disagreement between our results and results obtained in
[15]. In particular, our calculations show that the value of the muon transverse polarization
has negative sign in all Dalitz plot region and its absolute value varies in the region of
(0.0÷ 1.1) · 10−3, and the PT dependence on the x, y parameters is different than in [15].

We would like to remark that the muon transverse polarization for the same process
was also calculated in [17], where the contributions from diagrams 2e and 2f were taken
into account. However, the calculation method used in [17] does not allow to compare the
analytical results, but as for the numerical ones, they differ from our results and results of
[15] as well: though the shape of the destributions is similar, PT value has opposite sign
in comparison to ours. The absence of the explicit expressions for ρ0 and ρT functions
and imaginary parts of formfactors excludes the possibility to compare results [17] with the
results by other authors.

Weinberg model case

Calculating the muon transverse polarization within the three doublet model we choose the
model parameters in a way, first, to maximize the polarization value and, second, to satisfy
the bounds of (22)-(25). In Fig. 6 we present the three-dimensional PT distribution for
the Weinberg model case with MH± = 70 GeV, Im(J) = 7 · 10−5, and kinematical cut
Eγ > 20 MeV.

The behaviour of the transverse polarization as the function PHiggs
T = f(x, y) in the case

of the three doublet model is significantly differs from that one in SM. First, in this model
the sign of the transverse polarization depends on the sign of Im(J), see (21). Second, the
PHiggs
T = f(x, y) function has different behaviour and the region of maximal absolute values

is located in different (x, y) region: 0.6 ≤ x ≤ 0.8 and 0.9 ≤ y ≤ 1.. Corresponding level
lines PHiggs

T = f(x, y) are shown in Fig. 7.
Comparing the PT distributions in the case of SM and Weinberg model, Figs. 4 and 6,

one can see that the maximal value of the transverse polarization in the case of the Weinberg
model is a few times less than that one in SM. The averaged PT value, obtained by integrating
over the Dalitz plot region with the cut Eγ > 20 MeV, is

〈PHiggs
T 〉 = −6.62 · 10−5 , (27)

that is again an order of magnitude less than (26). So, for reliable detection of the charged-
Higgs effect one needs the experimental sensitivity to probe the transverse polarization in
the Kµ2γ process at the level of 10−4. Experiments conducted thus far are sensitive to PT at
the level of 1.5 · 10−2 [4], that is evidently insufficient to discover the effect.

Nevertheless, there are possibilities, connected with the upgrade of the E246 experiment
(expected sensitivity is about 2 · 10−3), and launch of new experiment E923 [14], where
the usage of a new method of T -odd polarization measurement allows to achieve the level
of 10−4, that seems more optimistic. Moreover, comparing the PT = f(x, y) in Figs. 4
6, one can notice that the relative PHiggs

T /P SM
T contribution can be significantly enhanced

by introducing cuts in (x, y) region. The statistics increase will allow one to analyse the
distribution for PT = f(x, y) rather than its average value only.
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Appendix 1

Calculating the integrals, contributing to (14) and (15), we use the following notations:

P = pµ + q

dρ =
d3kγ
2ωγ

d3kµ
2ωµ

δ(kγ + kµ − P )

We present below either the explicit expressions for integrals, or the set of equations, which
being solved, give the parameters, entering the integrals.

J11 =
∫
dρ =

π

2

P 2 −m2
µ

P 2
,

J12 =
∫
dρ

1

(pKkγ)
=

π

2I
ln
(

(PpK) + I

(PpK)− I
)
,

where
I2 = (PpK)2 −m2

KP
2 .

∫
dρ

kαγ
(pKkγ)

= a11p
α
K + b11P

α .

The a11 and b11 parameters are determined by the following equation:

a11 = − 1

(PpK)2 −m2
KP

2

(
P 2J11 −

J12

2
(PpK)(P 2 −m2

µ)
)
,

b11 =
1

(PpK)2 −m2
KP

2

(
(PpK)J11 −

J12

2
m2
K(P 2 −m2

µ) .
)

∫
dρkαγ = a12P

α ,
∫
dρkαγ k

β
γ = a13g

αβ + b13P
αP β ,

where

a12 =
(P 2 −m2

µ)

2P 2
J11 ,

a13 = − 1

12

(P 2 −m2
µ)2

P 2
J11 ,

b13 =
1

3

(P 2 −m2
µ

P 2

)2

J11 .

J1 =
∫
dρ

1

(pKkγ)((pµ − kγ)2 −m2
µ)

= − π

2I1(P 2 −m2
µ)

ln
(

(pKpµ) + I1

(pKpµ)− I1

)
,

J2 =
∫
dρ

1

(pµ − kγ)2 −m2
µ

= − π

4I2
ln
(

(Ppµ) + I2

(Ppµ)− I2

)
,
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where

I2
1 = (pKpµ)2 −m2

µm
2
K ,

I2
2 = (Ppµ)2 −m2

µP
2 .

∫
dρ

kαγ
(pµ − kγ)2 −m2

µ

= a1P
α + b1p

α
µ ,

a1 = −m
2
µ(P 2 −m2

µ)J2 + (Ppµ)J11

2((Ppµ)2 −m2
µP

2)
,

b1 =
(Ppµ)(P 2 −m2

µ)J2 + P 2J11

2((Ppµ)2 −m2
µP

2)
,

The integrals below are determined by the parameters, which can be obtained by solving
the sets of equations.

∫
dρ

kαγ
(pKkγ)((pµ − kγ)2 −m2

µ)
= a2P

α + b2p
α
K + c2p

α
µ ,





a2(PpK) + b2m
2
K + c2(pKpµ) = J2

a2(Ppµ) + b2(pKpµ) + c2m
2
µ = −1

2
J12

a2P
2 + b2(PpK) + c2(Ppµ) = (pµq)J1

∫
dρ

kαγ k
β
γ

(pKkγ)((pµ − kγ)2 −m2
µ)

= a3g
αβ + b3(P αpβK + P βpαK) + c3(P αpβµ + P βpαµ)

+ d3(pαKp
β
µ + pβKp

α
µ) + e3p

α
µp

β
µ

+ f3P
αP β + g3p

α
Kp

β
K ,





4a3 + 2b3(PpK) + 2c3(Ppµ) + 2d3(pKpµ) + g3m
2
K + e3m

2
µ + f3P

2 = 0

c3(pKpµ) + b3m
2
K + f3(PpK)− a1 = 0

c3(PpK) + d3m
2
K + e3(pKpµ)− b1 = 0

a3 + b3(PpK) + d3(pKpµ) + g3m
2
K = 0

b3(pKpµ) + c3m
2
µ + f3(Ppµ) = −1

2b11

b3(Ppµ) + d3m
2
µ + g3(pKpµ) = −1

2a11

a3P
2 + 2b3P

2(PpK) + 2c3P
2(Ppµ) + 2d3(Ppµ)(PpK) + e3(Ppµ)2 + f3(P 2)2 + g3(PpK)2 = (pµq)

2J1

∫
dρ

kαγ k
β
γ

(pµ − kγ)2 −m2
µ

= a4gαβ + b4(P αpβµ + P βpαµ) + c4P
αP β + d4p

α
µp

β
µ ,





a4 + d4m
2
µ + b4(Ppµ) = 0

b4m
2
µ + c4(Ppµ) = −1

2
a12

4a4 + 2b4(Ppµ) + c4P
2 + d4m

2
µ = 0

a4P
2 + 2b4P

2(Ppµ) + c4(P 2)2 + d4(Ppµ)2 ==
(P 2−m2

µ)2

4
J2
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∫
dρ

kαγ k
β
γ k

δ
γ

(pµ − kγ)2 −m2
µ

= a5(g
αβpδµ + gδαpβµ + gβδpαµ) + b5(gαβP δ + gδαP β + gβδP α)

+ c5p
α
µp

β
µp

δ
µ + d5P

αP βP δ + e5(P
αpβµp

δ
µ + P δpαµp

β
µ + P βpδµp

α
µ)

+ f5(P αP βpδµ + P δP αpβµ + P βP δpαµ) ,





2a5 + c5m
2
µ + e5(Ppµ) = 0

a5m
2
µ + b5(Ppµ) = −1

2a13

b5 + e5m
2
µ + f5(Ppµ) = 0

d5(Ppµ) + f5m
2
µ = −1

2b13

6a5 + c5m
2
µ + 2e5(Ppµ) + f5P

2 = 0

3a5P
2(Ppµ) + 3b5(P 2)2 + c5(Ppµ)3 + d5(P 2)3 + 3e5P

2(Ppµ)2 + 3f5(P 2)2(Ppµ) =
(P 2−m2

µ)3

8 J2
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Appendix 2

Here we present the expressions for imaginary parts of form-factors as the functions of
parameters, calculated in Appendix 1.

Imf̃K =
α

2π
fK (− 4 a3 (pKq) + 4 a2 mµ

2 (pKq)− 2 b3 mµ
2 (pKq) + 4 c2 mµ

2 (pKq)−
4 c3 mµ

2 (pKq)− 2 d3 mµ
2 (pKq)− 2 e3 mµ

2 (pKq)− 2 f3 mµ
2 (pKq) +

4 a2 (pKq) (pµq)− 4 b3 (pKq) (pµq)− 4 c3 (pKq) (pµq)− 4 f3 (pKq) (pµq)) +
α

2π
Fa (8 a4 (pKq)− 8 a5 (pKq)− 8 b5 (pKq) + 8 b4 mµ

2 (pKq) +

4 c4 mµ
2 (pKq)− 2 c5 mµ

2 (pKq) + 4 d4 mµ
2 (pKq)− 2 d5 mµ

2 (pKq)−
6 e5 mµ

2 (pKq)− 6 f5 mµ
2 (pKq) + 12 b4 (pKq) (pµq) + 8 c4 (pKq) (pµq) +

4 d4 (pKq) (pµq)− 4 d5 (pKq) (pµq)− 4 e5 (pKq) (pµq)− 8 f5 (pKq) (pµq)) +
α

2π
Fv (8 a4 (pKq)− 8 a5 (pKq)− 8 b5 (pKq) + 8 b4 mµ

2 (pKq) +

4 c4 mµ
2 (pKq)− 2 c5 mµ

2 (pKq) + 4 d4 mµ
2 (pKq)− 2 d5 mµ

2 (pKq)−
6 e5 mµ

2 (pKq)− 6 f5 mµ
2 (pKq) + 12 b4 (pKq) (pµq) + 8 c4 (pKq) (pµq) +

4 d4 (pKq) (pµq)− 4 d5 (pKq) (pµq)− 4 e5 (pKq) (pµq)− 8 f5 (pKq) (pµq))

ImF̃a =
α

2π
fK

(
a2 mµ

2 + 2 c2 mµ
2 − c3 mµ

2 − 2 d3 mµ
2 − e3 mµ

2 −
a1 mµ

2

(pµq)
− b1 mµ

2

(pµq)
+

2 b4 mµ
2

(pµq)
+
c4 mµ

2

(pµq)
+
d4 mµ

2

(pµq)

)
+

α

2π
Fv (8 a4 − 4 a5 − 12 b5 − 2 a1 mµ

2 + 4 b4 mµ
2 + 5 c4 mµ

2 − c5 mµ
2 −

d4 mµ
2 − 3 d5 mµ

2 − 5 e5 mµ
2 − 7 f5 mµ

2 + 2 a1 (pKpµ)− 4 b4 (pKpµ)−
4 c4 (pKpµ) + 2 d5 (pKpµ) + 2 e5 (pKpµ) + 4 f5 (pKpµ) + 2 a1 (pKq)−
2 b4 (pKq)− 4 c4 (pKq) + 2 d5 (pKq) + 2 f5 (pKq)− 4 a1 (pµq) +

6 b4 (pµq) + 10 c4 (pµq)− 6 d5 (pµq)− 2 e5 (pµq)− 8 f5 (pµq)) +
α

2π
Fa (− 6 a4 + 2 a5 + c4 mµ

2 − d4 mµ
2 − d5 mµ

2 −
e5 mµ

2 − 2 f5 mµ
2 + 2 a1 (pKpµ)− 4 b4 (pKpµ)− 4 c4 (pKpµ) +

2 d5 (pKpµ) + 2 e5 (pKpµ) + 4 f5 (pKpµ) + 2 a1 (pKq)− 2 b4 (pKq)−
4 c4 (pKq) + 2 d5 (pKq) + 2 f5 (pKq) + 2 c4 (pµq)− 2 d5 (pµq)− 2 f5 (pµq))
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ImF̃n =
α

2π
fK

(
4 a1 mµ + 2 a3 mµ + 2 b1 mµ + b11 mµ − 2 b4 mµ − 2 c4 mµ −

J12 mµ − 2 J2 mµ − b2 mK
2 mµ + g3 mK

2 mµ − 2 a2 mµ
3 −

c2 mµ
3 + c3 mµ

3 + f3 mµ
3 − 2 a2 mµ (pKpµ)− 2 b2 mµ (pKpµ) +

2 b3 mµ (pKpµ)− 2 c2 mµ (pKpµ) + 2 d3 mµ (pKpµ) + 2 J1 mµ (pKpµ) +

2 b3 mµ (pKq)−
a12 mµ

3

(pµq)
2 −

J11 mµ
3

(pµq)
2 −

a12 mµ

(pµq)
− 2 a4 mµ

(pµq)
+

J11 mµ

(pµq)
− a11 mK

2 mµ

2 (pµq)
+

3 a1 mµ
3

(pµq)
+

3 b1 mµ
3

(pµq)
+
b11 mµ

3

2 (pµq)
−

2 J2 mµ
3

(pµq)
− b11 mµ (pKpµ)

(pµq)
+
J12 mµ (pKpµ)

(pµq)
− b11 mµ (pKq)

(pµq)
+

J12 mµ (pKq)

(pµq)
− 2 a2 mµ (pµq) + 2 c3 mµ (pµq) + 2 f3 mµ (pµq)

)
+

α

2π
Fv

(
2 a4 mµ − 4 a5 mµ + 2 b13 mµ − 4 b5 mµ −

2 a1 mµ
3 + c4 mµ

3 − c5 mµ
3 − d4 mµ

3 − d5 mµ
3 − 3 e5 mµ

3 −
3 f5 mµ

3 + 2 a1 mµ (pKpµ)− 2 c4 mµ (pKpµ) + 2 d4 mµ (pKpµ) +

2 d5 mµ (pKpµ) + 2 e5 mµ (pKpµ) + 4 f5 mµ (pKpµ)− 2 c4 mµ (pKq) +

2 d5 mµ (pKq) + 2 f5 mµ (pKq) +
3 a13 mµ

(pµq)
+
b13 mµ

3

(pµq)
−

b13 mµ (pKpµ)

(pµq)
− b13 mµ (pKq)

(pµq)
− 2 a1 mµ (pµq) + 2 c4 mµ (pµq)−

2 d4 mµ (pµq)− 2 d5 mµ (pµq)− 2 e5 mµ (pµq)− 4 f5 mµ (pµq)
)

+

α

2π
Fa

(
− 6 a4 mµ + 8 a5 mµ − b13 mµ + 8 b5 mµ − 4 b4 mµ

3 −
2 c4 mµ

3 + c5 mµ
3 − 2 d4 mµ

3 + d5 mµ
3 + 3 e5 mµ

3 + 3 f5 mµ
3 +

2 a1 mµ (pKpµ)− 2 c4 mµ (pKpµ) + 2 d4 mµ (pKpµ) + 2 d5 mµ (pKpµ) +

2 e5 mµ (pKpµ) + 4 f5 mµ (pKpµ)− 2 c4 mµ (pKq) + 2 d5 mµ (pKq) +

2 f5 mµ (pKq)−
3 a13 mµ

(pµq)
− b13 mµ

3

2 (pµq)
− b13 mµ (pKpµ)

(pµq)
−

b13 mµ (pKq)

(pµq)
− 6 b4 mµ (pµq)− 4 c4 mµ (pµq)− 2 d4 mµ (pµq) +

2 d5 mµ (pµq) + 2 e5 mµ (pµq) + 4 f5 mµ (pµq)
)
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ImF̃v =
α

2π
fK

(
a2 mµ

2 + c3 mµ
2 + e3 mµ

2 +

a1 mµ
2

(pµq)
+
b1 mµ

2

(pµq)
− 2 b4 mµ

2

(pµq)
− c4 mµ

2

(pµq)
− d4 mµ

2

(pµq)

)
+

α

2π
Fa (6 a4 − 2 a5 − 8 b5 + c4 mµ

2 − d4 mµ
2 − d5 mµ

2 − e5 mµ
2 −

2 f5 mµ
2 − 2 a1 (pKpµ) + 4 b4 (pKpµ) + 4 c4 (pKpµ)− 2 d5 (pKpµ)−

2 e5 (pKpµ)− 4 f5 (pKpµ)− 2 a1 (pKq) + 2 b4 (pKq) + 4 c4 (pKq)−
2 d5 (pKq)− 2 f5 (pKq) + 2 c4 (pµq)− 2 d5 (pµq)− 2 f5 (pµq)) +
α

2π
Fv (− 8 a4 + 4 a5 + 4 b5 + 2 a1 mµ

2 − 4 b4 mµ
2 − 3 c4 mµ

2 + c5 mµ
2 −

d4 mµ
2 + d5 mµ

2 + 3 e5 mµ
2 + 3 f5 mµ

2 − 2 a1 (pKpµ) + 4 b4 (pKpµ) +

4 c4 (pKpµ)− 2 d5 (pKpµ)− 2 e5 (pKpµ)− 4 f5 (pKpµ)− 2 a1 (pKq) +

2 b4 (pKq) + 4 c4 (pKq)− 2 d5 (pKq)− 2 f5 (pKq) + 4 a1 (pµq)−
6 b4 (pµq)− 6 c4 (pµq) + 2 d5 (pµq) + 2 e5 (pµq) + 4 f5 (pµq))
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Figure captions

Fig. 1. Feynman diagrams for the K± → µ±νγ decay in the tree level of SM.

Fig. 2. Feynman diagrams contributing to the muon transverse polarization in the tree
level approximation of SM.

Fig. 3. Bounds for the three doublets Weinberg model parameters coming from: ) the
analog of the KM matrix for the charged-Higgs boson mixings. The allowed parameter
region is below the bounding curve; ) the data on charged-Higgs search at LEP II
(allowed region above the dashed line) and data on the D0 − D̄0-mixing (allowed
region is above the solid line); ) the data on the neutron EDM (allowed region is below
the bounding curve).

Fig. 4. The 3D Dalitz plot for the muon transverse polarization as a function of x =
2Eγ/mK and y = 2Eµ/mK for the one-loop approximation of SM.

Fig. 5. Level lines for the Dalitz plot of the muon transverse polarization PT = f(x, y) in
the SM case.

Fig. 6. The 3D Dalitz plot for the muon transverse polarization as a function of x =
2Eγ/mK and y = 2Eµ/mK within the three doublets Weinberg model.

Fig. 7. Level lines for the Dalitz plot of the muon transverse polarization PT = f(x, y) in
the Weinberg model case.
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