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Abstract

In the framework of scalar-vector dominance we calculate the hadronic matrix el-
ements of scalar and tensor effective quark currents induced by virtual leptoquark in-

teractions. Combined bounds on the product of couplings and leptoquark masses are
obtained from experimental data.

1 Introduction

Recently, new data on the analysis of K+ → π0l+νl decays were published by two collabo-
rations: KEK-E246 [1] and ISTRA [2], in addition to the presentation given by the Particle
Data Group [3]. So, at present we have got quite precise measurements of characteristics in
the Kl3 decays, that needs a theoretical interpretation in the framework of Standard Model
(SM) as well as beyond it. Such the study is of interest because of the experimental search
for effects, which can point to the contributions with the violation of combined CP-parity in
the kaon decays, for example, the transverse T-odd polarization of lepton in Kl3γ modes [4],
that can essentially enrich the information on the CP-breaking dynamics in addition to the
program with the B-mesons [5].

The matrix element of decay is parameterized in terms of scalar, vector and tensor form
factors, fS, f± and fT , in the following general form [6]:

M[K+ → π0l+νl] = GFVsu

[
− lµ(f+p

µ + f−q
µ) + 2mKlSfS + i

fT
mK

lµνp
µqν
]
, (1)

where the lepton currents are given by the expressions

lµ = ν̄LγµlL,

lµν = ν̄Lσµν lR,

lS = ν̄LlR,

so that chiral spinors are

θR,L =
1

2
(1± γ5) θ,

and GF is the Fermi constant, mK is the mass of kaon. The four-momenta are defined as

p = pK + pπ, q = pK − pπ,
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while Vsu is the matrix element of Cabibbo–Kobayashi–Maskawa matrix for the mixing of
weak charged quark-currents. We define the generators σ by the commutator

σµν =
i

2
[γµ, γν ].

The dependence of form factors on q2 is usually expressed in terms of linear slopes normalized
to get the dimensionless quantities

λi =
d ln fi(q

2)

dq2/m2
π

∣∣∣∣
q2=0

, (2)

where mπ is the pion mass. The combination of form factors

f0 = f+ +
q2

p · q f−, (3)

is introduced, so that the experimental data are given in terms of the following set [6]:

λ+, λ0,
fS, T
f+(0)

.

The data of [1, 2] on λ+,0 can be averaged, so that with the statistical errors we get

λ+ = 0.0287 ± 0.0018, (4)

λ0 = 0.0203 ± 0.0033, (5)

while the systematic uncertainties are given in the original papers. The values in (4) and (5)
result in the ratio

f−(0)

f+(0)
= −0.096 ± 0.043. (6)

The given parameter λ+ is in a good agreement with the PDG values for both the electron
and muon modes [3], while λ0 and f−(0)/f+(0) above are within the limits of 1.5σ-deviations
from the PDG averages. The preliminary analysis by KTeV [7] gives

λ+ = 0.0275 ± 0.0008,

which is close to the estimate in (4).
In the framework of SM we get the form factors

〈π0(pπ)| s̄γµu |K+(pK)〉 =
1√
2

(f+pµ + f−qµ), (7)

while
fS = fT = 0.

Therefore, the study of scalar and tensor form factors is a good test for the search of ‘new’
physics beyond the SM.
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Supposing (7), we derive

qµ 〈π0(pπ)| s̄γµu |K+(pK)〉 = (mu −ms) 〈π0(pπ)| s̄u |K+(pK)〉 = (p · q) f0√
2
, (8)

implying that the form factor f0 determines the matrix element of scalar quark-current.
The contraction of vector lepton-current

−lµ qµ f− = mlf− lS,

induces the scalar term in the matrix element. So, the electron mode is more sensitive to the
extraction of scalar form factor, since the SM background contribution is suppressed by the
lepton mass,

fSM
S =

ml

2mK

f−.

At present, the measurements of fS and fT result in values slightly deviating from zero, that
is consistent with the expectations of SM. So, in the electron mode [1]

fS
f+(0)

= 0.0040 ± 0.0160(stat.)± 0.0067(syst.), (9)

fT
f+(0)

= −0.019 ± 0.080(stat.)± 0.038(syst.), (10)

where we have taken into account the redefinition of sign in comparison with the appropriate
formula in [1] as accepted in this paper in (1), while the combined analysis of muon and
electron modes in [2] results in the similar values

fS
f+(0)

= 0.004 ± 0.005(stat.)± 0.005(syst.), (11)

fT
f+(0)

= −0.021 ± 0.028(stat.)± 0.014(syst.). (12)

The collaboration KTeV presented the following constraints in the electron mode:
∣∣∣∣
fS

f+(0)

∣∣∣∣ < 0.04, (13)

∣∣∣∣
fT

f+(0)

∣∣∣∣ < 0.14. (14)

In the present paper we study nonzero contribution of leptoquark interactions to the tensor
form factor, which correlates with the scalar one due to the Fierz transformation. In section 2
the effective lagrangians with the virtual leptoquarks are described as concerns for the decays
of K+ → π0l+νl, and the requared matrix elements of quark currents are presented. General
expressions for the hadronic matrix elements with the tensor structure are derived in section 3,
where we develop the model based on the dominance of vector and scalar mesons and adjust it
in the description of f±,0 form factors. In the framework of potential approach the preferable
region of model parameter is limited in agreement with the experimental data. The constraints
on the masses of scalar leptoquark and their couplings to the fermions are obtained in section
4. The results are summarized in the Conclusion.
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2 The contribution of leptoquark interactions

A consistent classification of leptoquarks under the gauge symmetries of SM were done by
Buchmüller, Rückl and Wyler in [8]. We accept the nomenclature prescribed in [9] as shown
in Table 1 extracted from [10]. So, the leptoquarks are marked by their spin, representation
of weak SU(2)-group (singlets, doublets and triplets), appropriate electric charges in the
multiplets and the fermion number F . For the sake of briefness, the flavor of lepton is marked
by the electron in Table 1, while the couplings YL,R should be labelled by the flavor indices,
too.

The diagrams describing the contribution of leptoquark interactions into the form factors
under study are shoWn in Fig. 1.

s

u

lR

νL

S1/2

s

u

νL

lR

S0

Figure 1: Two kinds of leptoquark exchanges contributing to the tensor form factor in the
decay K+ → π0l+νl.

The tensor terms appear under the Fierz transformations, so that the vector leptoquarks
do not contribute into the tensor form factor. Further, the tensor term shifts the helicity of
leptons. Therefore, we isolate the leptoquarks involving the interaction with both the left-
handed neutrinos and right-handed charged leptons. The appropriate vertices are shaded in
Table 1. Thus, we consider the following scalar leptoquarks: the singlet S0 and the doublet
S1/2 with the charge −2/3.

The Yukawa-like interactions involving the strange quark have the form

L[S1/2] = S∗1/2 (YL ūRνL + YR s̄LlR) + h.c., (15)

L[S0] = S∗0 [Y
[0]
L (ūC,ReL + s̄C,RνL) + Y

[0]
R ūC,LlR] + h.c., (16)

where we have omitted the flavor indices. These lagrangians induce the effective low-energy
interactions according to the formulae

Leff = −1

8

YRY∗L
M2

S1/2

(s̄LσαβuR) (ν̄Lσ
αβlR)−

−1

2

YRY∗
L

M2
S1/2

(s̄LuR) (ν̄LlR) + h.c., (17)
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coupling and

scalar LQ (q̃) charge F decay mode βe

S0 (or d̃R) −1/3 2
YL :

YR :

e−L u, νLd

e−R u

1/2

1

S̃0 −4/3 2 YR: e−R d 1

S̃1/2 (or
¯̃
dL) +1/3 0 YL: νLd̄ 0

S̃1/2 (or ¯̃uL) −2/3 0 YL: e−
L

d̄ 1

S1

+2/3

−1/3

−4/3

2

YL :

YL :

YL :

νLu

νLd, e−
L

u

e−L d

0

1/2

1

S1/2

−2/3

−5/3

0

YL :

YR :

YL :

YR :

νLū

e−R d̄

e−L ū

e−
R

ū

0

1

1

1

coupling and

vector LQ charge F decay mode βe

V1/2

−1/3

−4/3

2

YL :

YR :

YL :

YR :

νLd

e−R u

e−L d

e−R d

0

1

1

1

Ṽ1/2

+2/3

−1/3
2

YL :

YL :

νLu

e−
L

u

0

1

V0 −2/3 0
YL :

YR :

e−L d̄, νLū

e−
R

d̄

1/2

1

V1

+1/3

−2/3

−5/3

0

YL :

YL :

YL :

νLd̄

e−
L

d̄, νLū

e−L ū

0

1/2

1

Ṽ0 −5/3 0 YR: e−R ū 1

Table 1: The first generation scalar (S) leptoquarks/squarks and vector (V) leptoquarks in
the BRW model [8] according to the nomenclature in [9] with their electric charge in units of
e and fermion number F = L + 3B. For each possible non-zero coupling Y the decay modes
and the corresponding branching ratio βe for the decay into an electron and a quark are also
listed. The restrictions on the values of βe arise from the assumption of chiral couplings.
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where we have used the Fierz transformations for the chiral fermions, taking into account the
identity

γ5 θR = θR,

that causes the summation of scalar and pseudoscalar parts (the factor of 2). The anti-
commutation of fermions has been explored, too (the overall negative sign). Further we
introduce the notation

1

Λ2
LQ

=
YRY∗L
M2

S1/2

, (18)

since the above combination of leptoquark mass and couplings enters the problem under study.
As for the contribution of S0, one can easily find that the effective lagrangian has the same

form of (17), because the charge conjugation of spinor is defined by

θC = C θ∗,

where C = iγ2 in the Dirac representation of γ-matrices, so that

CγT
µ C−1 = −γµ,

where T denotes the transposition. The terms induced by the leptoquarks S1/2 and S0 can
interfere, of course. However, we include this effect into the definition of scale ΛLQ.

Thus, we can estimate the contribution of leptoquark interactions, once we calculate the
appropriate matrix elements of quark currents, that is the deal of next section.

3 Hadronic matrix elements

The experimental data on the slopes of form factors shown in the Introduction are in a good
agreement with the estimates in the framework of chiral perturbation theory (χPT) [11].
However, to the moment we have not any predictions of χPT on hands as concerns for the
hadronic matrix elements of tensor quark-current. In the present paper we explore the model of
meson dominance, i.e. the dominance of vector and scalar states appropriate for the quantum
numbers of transitions between the quarks. The corresponding diagram is shown in Fig. 2.

Considering the vector quark-current, we can evaluate the form factors

f+(q2) = gK∗Kπ
fK∗ mK∗

m2
su(q

2)

1

1− q2/m2
su(q2)

, (19)

f−(q2) = −f+(q2)
m2
K −m2

π

m2
su(q2)

+ gK∗0Kπ
fK∗0
m2
K∗0

1

1− q2/m2
K∗0

, (20)

in terms of couplings entering the following Lagrangians1

LK∗Kπ = gK∗Kπ (pK + pπ)µ ε
µ
K∗ ϕ

∗
K ϕ

∗
π, (21)

LK∗0Kπ = gK∗0Kπ ϕK∗0 ϕ
∗
K ϕ

∗
π, (22)

1The couplings g are prescribed for the charged pions, while the neutral ones have the isospin factor 1/
√

2.

6



K

π

j

K∗, K∗0 (0+)

Figure 2: The diagram describing the contribution of excited vector and scalar kaon states
into the hadronic matrix element of current j factorized from the lepton part in the decay
K+ → π0l+νl.

and

〈K∗(k)| s̄γµu |0〉 = fK∗ ε
K∗
µ mK∗, (23)

〈K∗0 (k)| s̄γµu |0〉 = fK∗0 kµ, (24)

where ϕ denotes the appropriate field, and ε is the polarization vector of K∗. In (19) we
have introduced the running pole mass msu(q2) in the transition s → u. The normalization
condition is rather evident

msu(m
2
K∗) = mK∗,

while we need the value at q2 = 0, msu = msu(0), since we use the approximation of linear
evolution of form factors,

f+(q2) ≈ gK∗Kπ
fK∗ mK∗

m2
su

(1 + q2/m2
su), (25)

f−(q2) ≈ −f+(q2)
m2
K −m2

π

m2
su

+ gK∗0Kπ
fK∗0
m2
K∗0

(1 + q2/m2
K∗0

). (26)

The evolution of msu(q
2) to q2 = 0 is expected to be slow in the framework of model with the

meson dominance. We suppose that the spin forces in the bound state should be suppressed
beyond the pole, since they depend on a density of bound states, which drops outside the
poles. So, the spin-averaged mass of 1S-level in the s̄u system is known experimentally,

msu[1S] =
1

4
(mK + 3mK∗) ≈ 793 MeV.

We expect that
msu[1S] < msu(0) < mK∗.
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So, we put

msu ≈
1

2
(msu[1S] +mK∗) ≈ 0.85 GeV, (27)

which is inside the systematics uncertainty of the model. Since the spin-dependent forces are
suppressed in the excited P-waves, we put the pole mass in the scalar sector to be equal to
the experimental value of K∗0 .

From (25) and (26) one can easily deduce the expression for the scalar-channel form factor,

f0(q2) ≈ f+(0) + q2
gK∗0KπfK∗0

m2
K∗0

(m2
K −m2

π)
, (28)

as well as the slopes,

λ+ =
m2
π

m2
su

, (29)

λ0 = δ · λ+, (30)

where

δ =
1

f+(0)

gK∗0KπfK∗0m
2
su

m2
K∗0

(m2
K −m2

π)
, (31)

f+(0) = gK∗Kπ
fK∗ mK∗

m2
su

. (32)

The most of model parameters can be extracted from the experimental data. So, the coupling
constant fK∗ is well known,

fK∗ ≈ 215 MeV,

while the decay constants g are related with the widths measured2,

Γ[K∗ → Kπ] = g2
K∗Kπ

|pK|3
4πm2

K∗
, (33)

Γ[K∗0 → Kπ] = g2
K∗0Kπ

3 |pK|
16πm2

K∗0

, (34)

whereas |pK| denotes the momentum of kaon in the c.m.s, so that numerically3

gK∗Kπ ≈ 3.94, gK∗0Kπ ≈ 3.48 GeV.
2In the formulae for the total widths of K∗ and K∗0 we have explored the isospin-symmetry relations:

Γ[K∗+ → K+π0] = 1/2 Γ[K∗+ → K0π+] and the similar equation for the scalar meson K∗0 .
3In the estimates we put the effective masses in the equations relating the constants with the total widths, so

that mK∗ → msu[1S] and mK∗0 → 2|pK | in the limit of mK∗0 � mK ,mπ . In the phenomenological model under
study, the decay constants g enter the form factors in terms of products with the leptonic couplings f . These
products should be adjusted in order to satisfy some conditions motivated by QCD and its chiral symmetry.
In this way we have to follow a specified approach in estimates for both g and f as given below. We stress that
the model parameters g are quite uncertain because of reasons inherent for the phenomenological approach
ignoring higher excitations as well as a continuum contribution. Neverteless, we argue for the preerable choice
of numerical values.
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The only free parameter of the model is the coupling fK∗0 , which we are tending to restrict in
the framework of potential calculations by the comparative analysis with the known leptonic
constants of ρ and K∗. For this purpose, we calculate the diagram in Fig. 3, where the
quark-meson vertex includes the wave function of constituent quarks.

j
K∗, K∗0

u

s

Figure 3: The diagram describing the contribution of quark loop into the hadronic matrix
element of current j.

For the scalar state we use the current

j(x) = s̄(x)u(x),

with the identity
i∂µ [s̄(x)γµu(x)] = (mu −ms)j(x).

In this technique we find

fPM

K∗0
=

ms −mu

mK∗0

18

mred
√
πmK∗0

|R′s̄u(0)|, (35)

fPM

K∗ =

√
3

πms̄u[1S]
|Rs̄u(0)|, (36)

whereRs̄u(r) denotes the radial wave function in the system of s̄u, ms̄u[1S] is the spin-averaged
mass of K∗ and K, and mred is the constituent reduced mass for K∗0 , so that

mred ≈
md̄u[1S]ms̄u[1S]

md̄u[1S] +ms̄u[1S]
≈ 0.34 GeV.

For the ρ meson we have the expression similar to (36) under the substitution s̄→ d̄.
Further, we explore the static potential derived in [12] and solve the Schrödinger equation

[
p2

µq
+ V (r)

]
Ψ(r) = [Λ̄(µq) + 2(µ0 − µq)]Ψ(r), (37)

for the system d̄u, so that the binding energy Λ̄(µq) of 1S-level is related with the mass

md̄u[1S] = Λ̄(µq) + 2δµ, (38)

and it is shown in Fig. 4 at µ0 = 0.345 GeV, µ?q = 0.224 GeV versus the light quark constituent
mass µq with δµ = µ?q − µ0. In (38) we do not add the constituent masses of light quarks into
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0.15 0.2 0.25 0.3 0.35

0.5

0.6

0.7

0.8

md̄u[1S], GeV

µq, GeV

Figure 4: The mass of 1S level in the system d̄u calculated in the potential model with the
constituent mass µq.

the mass of meson, since the constituent masses are really the parts of potential energy V (r)
in the confining quark-gluon string.

The mass of bound state shows the minimum versus the constituent mass at µ?q, which
gives the optimal value of mass for the calculation of radial wave function. For the constituent
mass of strange quark we use

µs = ms + µ?q,

with ms = 0.24 GeV, which represents the current mass at the scale of 1 GeV [13].
At this stage the estimates of coupling constants in the potential model can be optimally

got according to (35) and (36). However, the corrections by both the quark-gluon loops and a
relativistic motion can be rather essential, that can be taken into account by the introduction
of K-factor,

f = K fPM.

At

K =
1

1.45
,

we get the estimates

fρ = 205 MeV, (39)

fK∗ = 217 MeV, (40)

fK∗0 = 130 MeV. (41)

The K-factor should generally depend on the spin and flavor of current under srudy. The above
estimates show that the dependence on the flavors of quarks composing the bound state is
rather suppressed, since we have amazingly reproduced the coupling constants of vector states
in the limits of experimental intervals with the uniform K-factor. As for the dependence on
the quantum numbers of the meson, we expect that the variation of K-factor is negligibly
small because the summed quark spin in both K∗ and K∗0 is equal to 1, while the spin-orbital
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contributions are usually suppressed. Thus, the estimate in (41) should be quite accurate up
to 5 MeV, as it does for ρ and K∗. Nevertheless, we permit a conservative variation4

120 MeV < fK∗0 < 140 MeV. (42)

Further, we can compare the model estimates with the experimental data on Kl3 decays
listed in the Introduction. This analysis is presented in Figs. 5 and 6. We draw the conclusion
on the model is well adjusted in describing the data.

0.1 0.12 0.14 0.16

0

0.01

0.02

0.03

0.1 0.12 0.14 0.16

0

0.01

0.02

0.03

λ0

fK∗0 , GeV

Figure 5: The model predictions for the slope λ0 versus the coupling constant of K∗0 meson
(the solid line) in comparison with the experimental data (the horizontal band). The vertical
band gives the region of preferable values of fK∗0 expected from the potential model.

According to (29) and (32) the values of λ+ and f+(0) are independent of fK∗0 . Numerically,
we get

λ+ = 0.0271 ± 0.0011, f+(0) = 1.046 ± 0.040, (43)

which are in a good agreement with both the experimental data and predictions of χPT.
Further, we test the model under the Callan–Treiman relation, that expresses the sum of

vector-current form factors in terms of leptonic constants of kaon and pion:

f+(m2
K) + f−(m2

K) =
fK
fπ
. (44)

In the model under study we get

f+(m2
K) + f−(m2

K) = f+(0) +
gK∗0KπfK∗0
m2
K∗0
−m2

K

≈ f+(0) +
gK∗0KπfK∗0
m2
K∗0

, (45)

4See the sum rule estimates in [13].

11



0.1 0.12 0.14 0.16

-0.2

-0.15

-0.1

-0.05

0

0.1 0.12 0.14 0.16

-0.2

-0.15

-0.1

-0.05

0

f−(0)/f+(0)

fK∗0 , GeV

Figure 6: The model predictions for the ratio f−(0)/f+(0) versus the coupling constant of K∗0
meson (the solid line) in comparison with the experimental data (the horizontal band). The
vertical band gives the region of preferable values of fK∗0 expected from the potential model.

where we have neglected the kaon mass with respect to the scalar meson one. Then, numeri-
cally the relations result in

fK
fπ

= 1.305 ± 0.020 or
fK
fπ
≈ 1.273 ± 0.017

under the variation in (42). So, at fπ = 132 MeV we deduce

fK = 172 ± 3 MeV or fK = 168 ± 4 MeV.

The systematic error caused by the approximation, as we see, is about 5 MeV, and conserva-
tively one expects

fK = 170 ± 4 ± 5 MeV,

which is in a good agreement with the known data.
Neglecting both the deviation of f+(0) from the unit and the kaon mass with respect to

the mass of scalar K∗0 , we can derive from (44) and (45) the Dashen–Weinstein relation

λ0 =
m2
π

m2
K −m2

π

(
fK
fπ
− 1

)
.

Both relations by Callan–Treiman and Dashen–Weinstein can acquire valuable numerical cor-
rections in the model under study as well as in the χPT. So, from the formula for λ0 we
get

fK = 160 ± 4 MeV,
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so that the displacement of fK points to the possible size of corrections.
Then, we calculate the expression for the hadronic matrix element of tensor quark-current

〈π0(pπ)| s̄σµνu |K+(pK)〉 = −i
f+(q2)√
2mK∗

(pµqν − pνqµ) ≈ −i
f+(0)√
2mK∗

(pµqν − pνqµ), (46)

where we have neglected the dependence of f+ on q2, since the antisymmetric tensor is linear
in q. Formula (46) can be compared with the general expression

〈π0(pπ)| s̄σµνu |K+(pK)〉 = − i√
2
B (pµqν − pνqµ), (47)

so that B depends on a single additional quantity c−(q2)

B = c−
f0(q2)

ms −mu
+ (ms +mu)

f−(q2)

p · q ,

where we have explored the definition

〈π0(pπ)| i
{
s̄(∂µu)− (∂µs̄)u

}
|K+(pK)〉 = (c+ pµ + c− qµ) 〈π0(pπ)| s̄u |K+(pK)〉,

with an evident condition of self-consistency

c+ = − 1

p · q (m2
s −m2

u + c− q
2).

In the model of meson dominance we get

c− =
f+

f0

ms −mu

mK∗
− f−
f0

m2
s −m2

u

p · q . (48)

Neglecting the current mass of light quark, at q2 = 0 we find

c−(0) ≈ ms

mK∗
+ (λ+ − λ0)

m2
s

m2
π

, (49)

c+(0) ≈ − m2
s

m2
K −m2

π

. (50)

The physical meaning of c± is rather simple: they determine the difference between the frac-
tions of meson momenta carried by the s̄ and u quarks in the kaon and pion under the weak
transition. At q2 = 0 we get

αK =
1

2
(c+ + c−) ≈ 0.018, (51)

απ =
1

2
(c− − c+) ≈ 0.28. (52)
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4 Constraints on the leptoquark scales

Under the determination of hadronic matrix elements of quark currents we derive the ratios
of form factors due to the contribution of leptoquark interactions,

fS
f+(0)

=

√
2

16GF|Vsu|
m2
K −m2

π

(ms −mu)mK

1

Λ2
LQ

, (53)

fT
f+(0)

= −
√

2

32GF|Vsu|
mK

mK∗

1

Λ2
LQ

, (54)

where we have supposed the positive definiteness of Yukawa-constant products with respect
to the mixing Vsu. Then we extract the values of leptoquark scales in the tensor part,

ΛLQ = 0.48+∞
−0.17 TeV, (55)

while the scalar form factor gives more stringent limit

ΛLQ = 3.4+∞
−1.1 TeV. (56)

Thus, we deduce the 95%-confidence level

ΛLQ > 1.2 TeV.

Let us compare the above restriction on the parameters of leptoquark interactions with the
constraints following from other processes relevant to the effective vertices induced by diagrams
in Fig. 1. Since the Yukawa constants are flavor dependent, the direct constraints can be
obtained from the leptonic decays of kaon, viz., from both the electron and muon ones. In this
way, the tensor interaction does not contribute, while the scalar one results in the multiplicative
scaling of the decay amplitude. The factor has the form

KLQ ≈ 1− 2
fS

f+(0)

mK

ml
, (57)

where we have neglected the masses of pion and u-quark, and ml denotes the mass of lepton.
The leptonic modes are measured with the accuracy of branching ratios

δBe

Be
≈ 1

22
,

δBµ
Bµ
≈ 1

300
,

that can be used in order to restrict the scalar interactions induced by the leptoquarks. So,
taking the ratio of branching ratios, which is independent of both the leptonic constant of
kaon and the CKM element |Vsu|, we get the expression

Be

Bµ
=
m2
e

m2
µ

1− 4
fS

f+(0)

mK

me

1− 4
fS

f+(0)

mK

mµ

= 2.3372 · 10−5 ·
1 − 4

fS
f+(0)

mK

me

1 − 4
fS

f+(0)

mK

mµ

,
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where we expand in small corrections following from the leptoquark interactions. Comparing
with the experimental result

Be

Bµ

∣∣∣∣
exp.

= (2.44 ± 0.11) · 10−5,

we find5

ΛLQ > 43 TeV.

Thus, the measurements of semileptonic kaon decay provide us with the soft confirmation of
constraints following from the leptonic decays, since the tensor and scalar effective vertices
correlate in the leptoquark interactions.

5 Discussion

In this paper we have developed a model of meson dominance, which has allowed us to get
quite an accurate description of hadronic form factors in the decay K+ → π0l+νl. In this
way we have adjusted the model under the experimental data on the matrix element of vector
quark-current and calculated the matrix element of tensor current induced by the leptoquark
interactions. The experimental data on the semileptonic decay of kaon allow us to extract the
constraints on the contributions beyond the Standard Model, so that

ΛLQ > 1.2 TeV,

where ΛLQ represents the ratio of leptoquark mass to the square of Yukawa-like coupling. This
limit softly confirms the bounds following from the leptonic decays of kaon.
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